Two different forms of palindrome resolution in the human genome: deletion or translocation.

نویسندگان

  • Takema Kato
  • Hidehito Inagaki
  • Hiroshi Kogo
  • Tamae Ohye
  • Kouji Yamada
  • Beverly S Emanuel
  • Hiroki Kurahashi
چکیده

Regions containing palindromic sequence are known to be susceptible to genomic rearrangement in prokaryotes and eukaryotes. Palindromic AT-rich repeats (PATRR) are hypervariable in the human genome, manifesting size polymorphisms and a propensity to rearrange. Size variations are mainly the result of internal deletions, while two PATRRs on 11q23 and 22q11 (PATRR11 and 22) contribute to generation of the t(11;22), a recurrent constitutional translocation. In this study, we analyzed the PATRR11 sequence of numerous polymorphic alleles in detail. Various types of shorter variants are likely derived from the most frequent approximately 450 bp PATRR11 by deletion. Deletion variants possess a significant number of identical nucleotides at their two endpoints, indicating the possible involvement of direct repeats within the PATRR11. Rare variants with insertional alterations involve AT-rich sequences of unknown origin. This is in contrast to palindrome-mediated translocations between PATRRs that manifest smaller deletions and only a limited number of identical nucleotides at the breakpoints. Further, we identified a rare translocation product that has a non-AT-rich insertion of a transcribed gene segment at the translocation breakpoint. Our data suggest that the outcomes of palindrome-mediated re-arrangements reflect distinct molecular pathways; intra-palindrome re-arrangements are possibly dictated by a replication slippage or microhomology-directed repair pathway, and inter-palindrome translocations are likely driven by non-homologous end joining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dissection Using Array Comparative Genomic Hybridization and Clinical Evaluation of An Infertile Male Carrier of An Unbalanced Y;21 Translocation: A Case Report and Review of The Literature

Chromosomal defects are relatively frequent in infertile men however, translocations between the Y chromosome and autosomes are rare and less than 40 cases of Y-autosome translocation have been reported. In particular, only three individuals has been described with a Y;21 translocation, up to now. We report on an additional case of an infertile man in whom a Y;21 translocation was associated wi...

متن کامل

ب‌ث‌ژ تنها واکسن موجود جهت مقابله با بیماری سل: مقاله مروری

Background: Despite advances in the vaccinology and chemotherapy in the past century, tuberculosis is still responsible for two million deaths every year. Emergence of multi-drug resistant strain and coinfection of TB-HIV make it a serious concern. Treatment and control of tuberculosis is a great health burden in every community. Active tuberculosis in children has very severe consequences espe...

متن کامل

Palindrome Mediated Translocation in Human: Where Do We Go from Here?

Palindromes are two groups of identical sequences which join each other in inverted direction. The palindrome mediated genomic instability contributes to a diverse group of genomic rearrangements like translocations, deletions, and amplifications. Palindrome involve in translocation have AT richness (PATRRs) and the best suited examples of this is t(11;22) translocation. PATRR22 is a hotspot of...

متن کامل

O-38: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...

متن کامل

I-44: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 2008